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Abstract-The homogenization theory for periodic media allows the global behaviour of masonry
to be derived from the behaviour of the constitutive materials (brick and mortar). Such a procedure
has been used by many authors but always in an approximate manner. In particular, the homo­
genization procedure has always been performed in several successive steps, head joints and bed
joints being introduced successively. Moreover, masonry was considered either as a two-dimensional
media under the plane stress assumption (very thin media), or as a three-dimensional bulk (very
thick media), so that its finite thickness was never taken into account.

The homogenization theory for periodic media is implemented here in a rigorous way, i.e. in
one step and on the real geometry of masonry (finite thickness and actual bond pattern). Numerical
applications are carried out and the results are compared with the predictions based on existing
simplified approaches. All the above-mentioned approximations turn out to slightly affect the in­
plane elastic characteristics of masonry, but it is anticipated that, in the non-linear range (plasticity
or damage), the same approximations might lead to erroneous results, quantitatively as well as
qualitatively (value of the ultimate load and mode of failure).

1. INTRODUCTION

Masonry may be considered as a periodic composite continuum; it is made up of two
different materials (brick and mortar) arranged in a periodic way. The homogenization
theory for periodic media allows the global behaviour of masonry to be derived from the
behaviour of the constitutive materials. This procedure has been used by many authors
such as Maier et al. (1991), Pande et al. (1989) or Pietruszczak and Niu (1992), but only in
an approximate manner.

• The homogenization procedure has always been performed in several steps, head
joints and bed joints being introduced successively. Such a methodology introduces
two sources oferror: first, the result generally depends on the order of the successive
steps, as shown by Geymonat et al. (1987); second, the geometrical arrangement is
not fully taken into account in the sense that different bond patterns (running bond
and stack bond for example) may lead to exactly the same result.

• The homogenization procedure itself was sometimes approximate [self consistent
method in Pietruszczak and Niu (1992)].

• The geometry of the arrangement was often simplified, mortar joints being treated
as interfaces or ellipsoidal inclusions [Pietruszczak and Niu (1992)].

• Finally, the thickness of masonry was never taken into account because masonry
was considered either as infinitely thin [two-dimensional media under the plane
stress assumption in Maier et al. (1991) and Pande et al. (1989)], or as infinitely thick
[three-dimensional bulk in Pande et al. (1989) and Pietruszczak and Niu (1992)].

The aim of this paper is to derive the in-plane elastic characteristics of masonry through
a rigorous application of the homogenization theory for periodic media, that is in one step,
on the exact geometry and taking into account the finite thickness of masonry. First, the
main results of the homogenization theory for periodic media are retrieved heuristically, in
the case of two-dimensional media. Such an intuitive reasoning is then easily extended to
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the case of three-dimensional media having only two directions of periodicity and a finite
thickness, such as masonry walls. Finally, numerical applications are carried out in linear
elasticity and the results are compared with the predictions based on other simplified
formulations: special attention is then given to the influence of the bond pattern (running
bond versus stack bond) of the thickness (plane stress assumption, bulk assumption, finite
thickness), and of the order of the successive steps (head joints first versus bed joints first).

2. HEURISTIC PRESENTATION OF THE HOMOGENIZATION THEORY FOR
TWO-DIMENSIONAL PERIODIC MEDIA

The principles of the homogenization theory are presented here in a rather intuitive
way, using only basic mechanics and mathematics. This presentation is mainly directed to
people who are not yet familiar with this theory. Most technical aspects such as functional
settings, existence and uniqueness theorems, convergence properties, etc. are deliberately
avoided. Complete and technical presentations based on asymptotic analysis may be found
in the literature (Bensoussan et al., 1978; Duvaut, 1984; Sanchez-Palencia, 1980).

For the sake of simplicity, only two-dimensional periodic media are considered in this
first part, i.e. three-dimensional media under the plane stress or plane strain assumption,
for example. Since it is intended to apply the homogenization theory to masonry, typical
"masonry like" patterns are considered; rectangles (bricks) arranged in stack bond or
running bond with regular head and bed joints (mortar). However, the presentation remains
valid for any type of two-dimensional periodic media (perforated sheet under plane stress
or fibre reinforced composites under plane strain for instance).

2.1. Description ofa two-dimensional periodic composite media
Consider a portion of masonry wall under the plane stress assumption (Fig. I). It is a

two-dimensional periodic composite continuum, made up of two different materials (brick
and mortar) arranged in a periodic way (running bond). The periodicity may be char­
acterized by a frame of reference (VI' v2), where VI and V2 are two independent vectors having
the following property: the mechanical characteristics of the media are invariant along any
translation mjvI + m2V2> where m j and m2 are integers (Fig. 1). As a consequence, it is enough
to define the mechanical properties of the media on a small domain S (cell) to be repeated
by translation. The most natural choice of cell is the parallelogram spanned by the vectors
of the frame of reference (Fig. 2, left). Neither the frame of reference, nor the associated
cell is uniquely defined. However, for a given frame of reference (VI> v2), all possible cells
have the same area lSI which is equal to the norm of the vector product IV I /\ v21 (Fig. 2,
right). Furthermore, the boundary as of a cell S can always be divided into two or three
pairs of identical sides corresponding to each other through a translation along VI> V2 or
VI -V2 (Fig. 2). Two such sides will be said to be opposite. Since finite element calculations
are to be performed on the cell, it is worth choosing it with the least area and, if possible,
with symmetry properties. Such minimum cells and associated frames of reference will be
called basic. The choice of the basic cell depends strongly on the geometry of the composite
media. In the case of common masonry patterns (stack bond or running bond), a "good"

Fig. 1. Two-dimensional running bond masonry (plane stress) and frame ofreference.
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/J5fj{
Two pairs of opposite sides

Fig. 2. Two different cells associated to the same frame of reference and having, respectively, two
and three pairs of opposite sides.
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basic cell is made up of one brick surrounded by half mortar joint. The reference frame is
then composed of

(1)

d I/1

?V2

V Vt liz..

where 2/ is equal to the length of the brick plus the thickness of the head joint, 2h is equal
to the height of the brick plus the thickness of the bed joint and d is the overlapping (Fig.
3): d = 0 gives stack bond, d = / gives running bond and d = (2/3)/ gives a bond which
should not be confused with 1/3 running bond (Fig. 4). Note that the same basic cell S
leads to different patterns when associated to different frames of reference. The boundary
as of the cell is composed of three pairs of opposite sides (vertical sides, upper left with
lower right, upper right with lower left) which reduce to two pairs (parallel sides of the
rectangle) in the case of the stack bond pattern. More complex bonds would require greater
cells, i.e. cells involving more than one brick. In the literature, distinction is often made
between rectangular patterns and hexagonal patterns. As a matter of fact, the formers are
particular cases of the latters; rectangular patterns admit an orthogonal basic frame whereas
hexagonal ones do not. Nevertheless, both admit a rectangular basic cell. Stack bond, 1/3
running bond and English bond are rectangular patterns; running bond, Flemish bond and
Dutch bond are hexagonal patterns (Fig. 4).

~Z:;Jl
Vt -V2

Fig. 3. Frame of reference, basic cell and opposite sides for common masonry patterns: d = 0 for
stack bond; d = I for running bond.
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Dutch bond
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Flemish bond
Fig. 4. Basic cell and frame of reference for more complex bond patterns.

2.2. Periodic stresses, strain-periodic displacements
Suppose now that a portion Q of masonry is subjected to a globally homogeneous

stress state. A stress state is said to be globally or macroscopically homogeneous over a
domain Q if all cells within Q undergo the same loading conditions. This can be approxi­
mately achieved with an experimental set-up designed to apply any biaxial principal stress
state to a panel (Dhanasekar et al., 1982). The shear stress component is then obtained by
selecting the proper lay-up angle of the specimen (Fig. 5). The approximation is due to
perturbations near the boundary; a cell lying near the boundary aQ of the specimen is not
subjected to the same loading as one lying in the centre. However, on account of the Saint­
Venant principle, cells lying far enough from the boundary are subjected to the same
loading conditions and therefore deform in the same way. In particular, two joined cells
must still fit together in their common deformed state, just like in a picture of Escher (Fig.
6). In mechanical terms, this means that, when passing from a cell to the next one, (i) the
stress vector (1' n is continuous; (ii) strains are compatible, i.e. neither separation nor
overlapping occurs. Since passing from a cell to the next one which is identical, also means
passing from a side to the opposite one in the same cell S, condition (i) becomes

stress vectors (1' n are opposite on opposite sides of as (2)

because external normal n are also opposite. Such a stress field (1 is said to be periodic on

Fig. 5. Macroscopically homogeneous stress state test [testing set-up from Dhanasekar el af. (1982)].
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Undeformed Deformed

Fig. 6. Escher-like picture illustrating the concept of macroscopic homogeneity.

as, whereas the external normal n and the stress vector (J' n are said to be anti-periodic on
as.

To ensure condition (ii), it is necessary that opposite sides can be superimposed in
their deformed states. In other words, the displacement fields on two opposite sides must
be equal up to a rigid displacement. In the case of stack bond pattern (Fig. 7, left), this is
expressed by

\lX2E[-h,h],u(l,X2)-U(-I,x2) = U- Rx2e l

\lXl E [-I, ~ ,u(x b h)-U(XI' -h) = V +Sx l e2, (3)

where U and V are translation vectors and Rand S are rotation constants. Of course, each
corner of the cell must undergo the same displacement when considered to belong either to
a vertical or a horizontal side. This means that relations (3) must be compatible when
written for extreme values of Xl and X2:

X2 = h=u(l,h)-u(-l,h) = U-Rhe l

X2 = -h =u(l,-h)-u( -I,-h) = U +Rhe l

Xl = l=u(l,h)-u(l,-h) = V+ S/e2

Xl = -I=u(-I,h)-u(-l,-h) = V-S/e2' (4)

This is ensured only if Rand S are zero constants. A very similar result may be proved in
the case of running bond pattern, provided that a parallelogram cell is considered (Fig. 7,
right). System (3) then changes to

R

Rectangular cell Parallelogram cell

u

Fig. 7. Strain compatibility through one side of a rectangular (left) or parallelogram (right) basic
cell.
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(5)

Again, displacements at corners are consistent only if Rand S are zero constants. System
(3) and (5) both reduce to

(6)

where d still stands for the overlapping. Since it leads to a periodic strain field, such a
displacement field u is called strain-periodic. It is easy to show that a strain-periodic
displacement field u may always be written in the following form :

where E.p are constants and uP is a periodic displacement field; uP takes equal values on
opposite sides of as. The equivalence between (6) and (7) is obtained by taking

Ell = UII21

E2l = U2/21

E]2 = (VI - U l d/2l)/2h

E22 = (V2 - U2d/2l)/2h. (8)

Relations (8) show that Ell represents the mean elongation of the cell along the first axis
and, more generally, that E is the mean strain tensor of the cell. In particular, the anti­
symmetric part of E corresponds indeed to a rigid rotation of the cell. As a consequence,
only the symmetric part ofE may be considered (rigid displacements are disregarded). This
interpretation ofE is consistent with the intuitive definition of the average <Q) ofa quantity
Q on the cell

r Qds

Js I f
<Q) = -f- = lSI Qds,

ds s
s

(9)

where lSI stands for the area of the cell S (lSI = IV I A v21). If Q is a vectorial or tensorial
quantity, definition (9) holds for each component of Q. Thus, if Q stands for a.p(u),

(10)

From (7) and the definition of a.p(u) as the symmetric part of the gradient of u, it follows
that
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since E has been assumed symmetric. By introducing (11) into (10), one gets

By integrating by parts, using the divergence theorem, it follows that
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(11)

(12)

(13)

Since uP and n are respectively periodic and anti-periodic vector fields on as, u~np is an anti­
periodic scalar field on as and, thus, its integral on as vanishes (values on opposite sides
cancel each other). Therefore, E turns out to coincide with the average of 8(U) on the cell

By introducing (14) into (7), the following definition is derived:

u strain-periodic¢> U- <8(U» •x periodic.

By analogy with (10), it is natural to introduce the average of (J.p on the cell by

(14)

(15)

(16)

By definition, <(J.p) is the so-called macroscopic stress component and will be noted L..p.

This is coherent with the fact that, in the case of the specimen shown on Fig. 5, I: coincides
with the stress applied to the specimen (this may be shown provided that the perturbations
near the boundary are disregarded).

If the basic cell includes a cavity r, definitions (10) and (16) need to be clarified since
(J and 8(U) are not defined within r. However, considering voids as infinitely soft inclusions
on which (J vanishes, definition (16) becomes

<u) = I~I Is. uds, (17)

where S* is the material part of S (S* = S - r) and lSI is still the total area of S
(lSI = lv, A V21). As far as strains are concerned, definition (10) may be transformed into a
boundary integral through the divergence theorem

(18)

Such a definition turns out to remain valid in the case of a perforated cell provided that the
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x' +v2

IICQII X~X+Vl
x'

Fig. 8. Basic cells including cavities intersecting the boundary (right) or not (left).

holes do not intersect the boundary as (Fig. 8, left); in dimension two, such a choice is
always possible. Re-transforming (18) through the divergence theorem, one gets

(19)

where or is the boundary of the cavity (0 points inside r). Expression (19) shows that the
deformation of the cell is composed of two terms: the deformation of the material part S*
(first integral) and the shape change of the hole (second integral).

Expressions (17) and (18) [or (19)] are of practical interest since their use in a finite
element code does not require the discretization of the holes. However, unlike expression
(17), expressions (18) and (19) are restricted to a particular choice of the basic cell (the
eventual holes should not intersect the boundary). A way to get rid of this last restriction
is to use the original definition of the average strain E. According to expression (7), if x and
(x + t) are two opposite points of as (i.e. if t is equal to Vb V2 or VI - V2), their corresponding
displacements verify

u~(x+ t) = u;(x) =u,(x+ t) - u,(x) = E,ptp. (20)

Writing relation (14) for another pair of opposite points related by a vector t' linearly
independent of t, one gets a linear system giving E and thus the symmetric part of E, in
terms of VI' V2 and of the displacements u at four particular points of the boundary of the
cell. It is always possible to choose those four points in the material part of the cell, even if
holes intersect the boundary (Fig. 8, right). Note that this last definition of the average
strain has a sense (i.e. is independent of the choice of the four points) only for strain­
periodic displacement fields, whereas definitions (18) or (19) may be applied to any dis­
placement fields, whether strain-periodic or not.

2.3. Homogenization
Let us still consider the problem of a masonry specimen subjected to a macroscopically

homogeneous stress state 1:. The previous section was devoted to the special conditions
holding on the boundary as of any cell S; (1 is periodic and u is strain-periodic. Those
conditions make it possible to study the problem within a single cell rather than on the
whole specimen. In order to find (1 and u everywhere in a cell, equilibrium conditions and
constitutive relationships must be added so that the problem to solve is

div(1 = OonS(no body forces)

(1 = ((e(u)) (constitutive law under plane stresses)
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G periodic on oS (G' n anti-periodic on oS)

U- (8(U)' x (periodic on oS)

(G) = 1:,1: given (stress controlled loading),
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(21)

where the constitutive law fis a periodic function of the spatial variable x since it describes
the behaviour of the different materials in the composite cell.

A problem similar to (21) is obtained when replacing the stress controlled loading by
a strain controlled one:

(8(U) = E,Egiven. (21a)

In both cases, the resolution of (21) is sometimes termed "localization" because the local
(microscopic) fields G and 8(U) are determined from the global (macroscopic) quantity 1: or
E.

It is worth noting that, independently of the constitutive laws of the materials, the
average procedure holds true in an energetic sense, i.e.

(G: 8(U) = (G): (8(U) = 1:: E (22)

for any divergence free periodic stress field G and any strain-periodic displacement field u.
Equality (22) is known as the Hill's macro-homogeneity equality.

Problem (21) exhibits two significant differences with a classical boundary problem:

• the loading consists in the integral of one field (and not in boundary or body forces);
• the boundary conditions are not local.

However, it turns out to be generally well-posed, i.e. it admits a unique solution (G, u) up
to a rigid displacement field (this has been proved for linear elasticity, perfect plasticity and
linear visco-elasticity). Once G and u are known, the missing macroscopic quantity E or 1:
may be evaluated. Repeating this process for any value of 1: or E amounts to build the
1: - E relationship, i.e. the global (macroscopic) constitutive law of the composite material.
This is termed homogenization because, by definition, if masonry is replaced by the fictitious
homogeneous material obeying to this macroscopic constitutive law (homogenized
material), the global answer of the specimen subjected to a macroscopically homogeneous
loading remains the very same. Such a result seems of little interest since, in practice, loads
are hardly macroscopically homogeneous. However, it turns out to remain approximately
true even for a macroscopically non-homogeneous loading provided that it does not change
too much from a basic cell to the next one. This means that the global behaviour of a plane
masonry structure subjected to in-plane loads is accessible without needing to represent
each individual basic cell. The same structure subjected to the same loads but made of the
homogenized material behaves in a similar way and is advantageously discretizable with a
reasonable number of finite elements (the discretization of the original structure would be
prohibitive). Furthermore, once the problem has been solved on the homogenized structure,
i.e. once macroscopic stress 1: and strain E are known at each Gauss point, the cor­
responding microscopic stress field G and displacement field u in the basic cell may be traced
back by solving (21).

2.4. Applicability of the homogenization theory
As stated before, the homogenization theory applies well provided that the loading

conditions are similar for adjacent basic cells. In practice, this is satsified if the size of the
basic cell is very small when compared to the size of the structure; at the structural scale,
two adjacent cells have almost the same position and thus undergo almost the same loading.
Incidentally, this condition is fundamental for deriving the homogenization theory through
asymptotic expansions with respect to the relative size of the basic cell (Bensoussan et al.,
1978; Duvaut, 1984; Sanchez-Palencia, 1980). However, the homogenization theory may
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2 1f =(c - c ):E· n
Fig. 9. Body forces concentrated at the interface of the constituents (brick and mortar).

also apply in the case of "not so small" basic cell if the macroscopic stresses induced by the
structural loads vary slowly within the structure; an extreme example is the testing set-up
of Fig. 5 where the induced macroscopic stresses are constant over the specimen. It is worth
noting that the relative size of the cell is known a priori whereas the variations of the
macroscopic stresses within the structure are known a posteriori, i.e., only once the homo­
genized problem has been solved. The homogenization theory also applies if the charac­
teristics of the basic cell change slowly within the structure, i.e. if adjacent basic cells are
almost identical.

Finally, concentrated loads and boundary conditions relative to the structure may
cause high gradients or even singularities in the macroscopic stress field. In those regions,
adjacent cells, even very small, may be found to undergo quite different loading conditions.
In that case, a local study in the critical region should be performed on the original (non­
homogenized) material in order to verify the validity of the global solution found on the
homogenized structure.

2.5. Homogenization in linear elasticity
Both constituents (brick and mortar) are now assumed linear elastic and perfectly

bonded. Problem (21) with strain controlled loading reads

diva = OonS

a = c: 8(U)

a' n anti-periodic on as
U - E· x periodic on as, (23)

where E is a given symmetric second-order tensor of:7l2 and c is the fourth-order tensor of
elastic stiffnesses in plane stress. Writing (23) in terms of uP = u - E' x, and eliminating a,
the following system is obtained:

div(c:ll(uP))+div(c:E) = OonS

c: (ll(uP) + E)' n anti-periodic on as

uP periodic on as. (24)

Note that the term c: (ll(uP) + E)' n simply reduces to c: ll(nP), n if the material characteristics
are continuous across the boundary as. The solution of (24) is then the periodic dis­
placement field inducing a periodic stress field and equilibrating the body forces f induced
by the uniform strain ( - E). If c is further assumed constant on each constituent, those
body forces then reduce to concentrate forces at the interface f between the constituents:

(25)

where n is the normal oriented from material I to material 2 and bf is the Dirac distribution
on the interface f (Fig. 9).
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Owing to the linearity of the problem, the solution uP and thus u = uP +E· x for any
E, may be found by linear recombination of the solutions corresponding to the three
elementary tensors:

11 [1I = o OJ 122 = [0
°' °

OJ 12 21 [0.5I = I =
1 ' ° (26)

so that, ifu'P is the solution of (23) for E = I'P, then u = E,pu'P is the solution for E = E,pl'P.
In particular, the local strains are given by

(27)

where A is a fourth-order tensor sometimes called the tensor of strain localization because
it gives the local strains 8 in terms of the average strain E. Moreover, the average stress ~
is given by

~ = (a) = (C:8(U) = (c:A:E) = (c:A):E (28)

so that C = (c: A) turns out to be the macroscopic tensor of elastic stiffnesses of the
equivalent two-dimensional (plane stress) material.

A dual approach would consist in solving problem (21) under stress controlled loading,
i.e.

diva = OonS

8(U) = c- I : a

a· n anti-periodic on as

u - (c- I
: a)· x periodic on as

(a) =~, (29)

where ~ is a given symmetric second-order tensor of ~2 and c- I is the fourth-order tensor
of elastic compliances in plane stress. As this problem is linear, the solution a is equal to
L,pa'P, where a'P is the elementary solution obtained for ~ = Pp. The fourth-order tensor
B, defined by

(30)

is sometimes called the tensor of stress concentration because it gives the local stresses a in
terms of the average stress ~.

Finally, the average strain E being given by

E = (8(0) = (c- l :a) = (c- l :B:~) = (c- I :B):~, (31)

D = (c: B), turns out to be the macroscopic tensor of elastic compliances of the equivalent
two-dimensional (plane stress) material. These two approaches are equivalent in the sense
that they lead to the definition of the same homogeneous material (D = C- 1

).

3. GENERALIZATION TO THREE-DIMENSIONAL PERIODIC MEDIA HAVING ONLY
TWO DIRECTIONS OF PERIODICITY

The presentation of Section 2 may be easily generalized to the case of a three-dimen­
sional composite media having three directions of periodicity. The additional direction is
then treated in the same way as the other two so that the equivalent homogeneous media
is also three-dimensional. In practice, this means that all indices are then varying from one
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Fig. 10. Three-dimensional basic cells in the case of regular (left) or irregular (right) lateral faces.

to three (Vi, Xi' Ui Eij, ~ij' etc.). Such a methodology is therefore appropriate for masonry
bulks, i.e. three-dimensional periodic arrangements of brick and mortar (Fig. II, right).
Up to a certain extent, it can also be applied to masonry walls if these are considered as
slices of masonry bulks, so that their homogenized in-plane characteristics coincide with
those of the bulk; this is the method used in Pande et al. (1989) and Pietruszczak and Niu
(1992). It is however an approximate method because then the lateral faces of the wall are
not generally stress free, only the average of the lateral stress vector over a basic cell is zero.
In reality, plane masonry is a three-dimensional media with only two directions of period­
icity in its own plane. The third direction (through the thickness) should therefore be treated
in a different way than the other two as is shown hereafter.

3.1. Description of the periodic media
Consider a portion of masonry wall in dimension three (Fig. 10). It is a three-dimen­

sional periodic media characterised by the same two directions of periodicity as in the plane
stress case. Therefore, the frame of reference (VI> V2) is still valid provided that VI and V2 are
now considered as vectors of g,p3 (having a zero component on e3)' Basic cells are now three­
dimensional; if the lateral faces of the masonry wall are plane, any of the two-dimensional
basic cells S proposed in the previous section may transform into a three-dimensional basic
cell V by translation along 2we3' where 2w stands for the thickness of the wall. Of course,
other choices of cell are also possible (Fig. 10, left). If the lateral faces of the wall are
irregular (concave joints, bricks with uneven lateral faces), the definition of the thickness is
not so clear. However, this does not preclude the clear definition of a basic cell V (Fig. 10,
right).

In the boundary surface av of any three-dimensional cell, two different regions may
be distinguished (Fig. 11, left); av\ which is internal to the wall (interfaces with adjacent
cells) and aVe which is external (lateral faces). As in the two-dimensional case, aVi may be
divided into three or two pairs of identical sides corresponding to each other through a
translation along VI> V2 or VI - V2 (opposite sides). This is generally not true for aVe; the two
lateral faces are not necessarily identical and, even if it is the case, they should not be called
opposite sides since they are not related by periodicity. In particular, a three-dimensional
basic cell characteristic of a masonry wall should not be confused with its homologue which
is characteristic of a masonry bulk having three directions of periodicity as in the above­
mentioned "slice" approach. In the latter case, the frame of reference would be composed
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iJV'~iJV' dV

Fig. 11. Homologous basic cells defining a masonry wall (left) and a masonry bulk (right).

of three vectors and the boundary av of the cell would be exclusively composed of opposite
sides (Fig. 11, right).

As far as stack bond and running bond are concerned, one brick surrounded by half
mortar joints still constitutes an appropriate basic cell having three planes of symmetry.

3.2. Periodic stresses, strain-periodic displacements
The definition of such fields need to be revised. Consider again a macroscopically

homogeneous plane stress state; conditions (i) (stress compatibility) and (ii) (strain com­
patibility) still hold but only on the internal part aVi of the boundary av, the remaining
part aVe being stress free. Therefore, a periodic stress field is such that stress vectors are
opposite on opposite sides of aVi, but no similar condition is required on aVe • Analogously,
strain compatibility is needed only on aVi, on two opposite sides of aVi' the displacement
fields must be equal up to a rigid displacement. For stack bond pattern, this is expressed
by

'v'X2E[- 11,11], 'v'X3 E[- w, w], u(l, X2, X3) - u( -1, X2, x 3) = U + R /\ (X2e2 +X3e3)

'v'x l E [-I,~, 'v'X3 E[- w, w], u(x], 11, X3) - u(x], -11, x 3 ) = V + S /\ (xle, +x3e3), (32)

where U and V are translation vectors of ~3, and Rand S are rotation vectors of ~3. When
written for extreme values of XI and Xl> i.e. on edges shared by two different sides of aVi'
relations (32) become

[

X2 = 11 =u(l, h" X3) - u( -1,11, X3) = U + R /\ (he 2+ X3e3)

X2 = -h=u(l,-h,X3)-U(-I,-h'X3) = U+R /\ (-he2+X3e3)
'v'X3 E[-t,t], .

Xl = 1= u(l, h, X3)-u(l, - h, X3) = V +S /\ (lei + x3e3)

Xl = -1=u(-I,h,X3)-U(-I,-h,X3) = V+S /\ (-/el+X3e3)

Such a system is compatible if, and only if, Rand S satisfy

so that by taking T = R I /21 = - S2/2h, (23) reduces to

(33)

(34)
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VXz E [-h, h], VX3 E[- W, W]

VXI E[ -I,~, VX3E[ -W, W]

(35)

Relations (35) characterize strain-periodic displacement fields for stack bond pattern.
Similar relations may be derived in the case of running pattern provided that a parallel­
epipedic cell is used. In both cases, a strain-periodic displacement field may always be
written in the following way:

where E I}, E 1z, Ezz, Ezj, XII' XIZ, X22' 0 1 and Oz are nine constants and uP is a periodic
displacement field (uP takes the same value on opposite sides of aVJ Equivalence between
(35) and (36) may be easily proved by taking

Ell = Ud2/; EZI = Uz/2/; E lz = Vd2h; E22 = Vz/2h

XII = -Rz/2/; Xzz = SI/2h; X1Z = T

0 1 = V3/2h; Oz = - U3/2/. (37)

Relations (37) show that E.p still represents the mean strain tensor of the cell but in the
plane (ej,ez) only (second-order tensor of ~Z). As in the two-dimensional case, the anti­
symmetric part of E may be disregarded for corresponding to a rigid rotation of the cell
around e3• Similarly, 0 1 and Oz will not be taken into account since they also correspond
to rigid rotations of the cell (around el and ez, respectively). The three remaining constants
XII' XIZ and Xll characterize the out-of-plane deformation of the cell (bending): for example,
XI} represents the mean curvature of the cell along e1; more generally, X.p turns out to be
the mean curvature tensor of the cell considered as a plate of normal e3 (Xli being defined
as equal to X12)' Note that these constants did not appear in the two-dimensional case in
Section 2 because in-plane displacements were implicitly considered. However, since the
out-of-plane behaviour of masonry is not under the scope of this paper, X.p constants will
be simply zeroed from now on. Any strain-periodic displacement field u therefore takes the
following form:

Ut(X b Xl ,X3) = E 11 x I +EI1Xl+U1CXb Xl,X3)}

Ul(Xt,Xl ,X3) = E Z1 X1+E22Xl+U~(Xj,X2,X3) ¢>Ut(XbX2,X3) = Di.E.pDpjXj+uf(xj,x2,x3),

U3(X b X2, X3) = u')(x j, X2, x 3)

(38)

where E is a symmetric second-order tensor of dimension two only, (j is the Kronecker
symbol and uP is a periodic displacement field.

As in the two-dimensional case, E,p may be identified to the average of the cor­
responding component G,p of the microscopic strain tensor, provided that the basic cell V
is suitably defined. The average of G.p is naturally given by
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Fig. 12. Completion of basic cells having irregular lateral faces (left) or internal holes (right).

where IVI stands for the volume of the basic cell. From (38), one gets

(39)

(40)

so that, by introducing (40) into (39) and applying the divergence theorem, it follows that

where the boundary av of V has been split into its internal and external parts. Since uP and
n are, respectively, periodic and anti-periodic on the internal boundary avj , the first integral
vanishes. The second integral defined on the external boundary aVe vanishes only if the
lateral faces of the basic cell are plane and perpendicular to e3 (i.e. if nl = n2 = 0 on aVe).
It is always possible to choose a basic cell having such a property since the eventual
irregularities of the lateral faces may be filled by a fictitious material having zero stiffness
(Fig. 12, left). Of course the volume IVI of the cell increases in the same proportion. Such
an artifice gives the desired property

(42)

Furthermore, it leads to a possible definition of the thickness of the wall as the distance
separating the two artificial lateral faces. However, expression (39) needs then to be clarified
since c,p(u) is not defined in the fictitious material. The same problem also appears in the
case of internal holes (Fig. 12, right). As in the two-dimensional case, expression (39) may
be transformed into a boundary integral on aVi (a Ve being chosen such that nl = n2 = 0) :

(43)

E~pression (43) is well defined provided that aVj does not intersect either superficial

SAS 32-2-B



152 A. Anthoine

irregularities or internal holes. Unfortunately, in dimension three, such a choice is not
always possible; internal holes or superficial irregularities or both may be inevitable (Fig.
12). In that case, the definition equivalent to the one proposed at the end of Section 2.2 is
then the only one available. According to definition (38), if x and (x + t) are two opposite
points of aVj (i.e. ift is equal to v" V2 or VI -V2), one gets

Writing relation (44) for another pair of opposite points related by a vector t' linearly
independent of t, one gets a linear system giving E and thus the symmetric part of E, in
terms of VI, V2 and of the in-plane displacements u at four particular points of the internal
boundary of the cell. It is always possible to choose those four points in the material part
of the cell, independently of the position of the cavities. As in the two-dimensional case,
this definition of the average strain is restricted to strain-periodic displacement fields. Its
advantage over definitions (39) and (43), is that it does not require the completion of the
basic cell (in a finite element code, only the material part will be discretized) nor the explicit
definition of the thickness.

For the sake of consistency with expression (39), the average of aafJ on the cell (by
definition the macroscopic stress L,fJ) should be given by

(45)

where V* is the material part of the basic cell and IVI its total volume (induding internal
holes and superficial irregularities). This definition uses the fact that aafJ vanishes within the
cavities. However, the definition of the thickness is still required to compute the total
volume of the cell (I VI = 2w X Iv] /\ V21). This drawback may be avoided by adopting plate
notations: if the average stresses are defined by

(46)

where lSI has the same meaning as before (lSI = IV I /\ V2!), the corresponding macroscopic
quantities are the membrane forces Nail which coincide with the linear density of forces
applied to the specimen (Fig. 5). Definition (46) offers the same advantages as the last
definition proposed for the average strain (the original material cell V* may be used and
no thickness need be defined) and will be therefore adopted from now on.

It must be pointed out that both average stresses N = (u) and average strains
E = (8(U) are second-order tensors of dimension two only. Definitions (39) and (46) may
be used to define the "missing" components (Eo and N i3 for i = 1, 2 or 3). However, this
is not necessary and even not always possible, for instance, expression (39) may depend on
arbitrary values of the displacement field in the cavities, even if transformed through the
divergence theorem into

(47)

On the contrary, definition (46) is always well defined but leads to zero values for No as it
will be shown in the next section.

3.3. Homogenization
The boundary conditions holding on the internal boundary aVi of the basic cell have

been established. Noting that the external boundary aVe is free of stress, the problem to be
solved on the basic cell is
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div/1 = Oon V(no body forces)

/1 = f(8(U)) (complete constitutive law)

/1 . n = 0 on i3 Ve

/1 periodic on aVi (/1' n anti-periodic on aVJ

U- (8(U)' x (periodic on aVi)

(/1) = N, N given (stress controlled loading)

or

(8(U) = E, E given (strain controlled loading),
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(48)

where (8(U), (/1) and N or E are second-order tensors of PIP. For the sake of conciseness,
the quantity 6;,(e,p(u)6/IjXj has been abusively replaced by (8(U)' x. It is now possible to
verify that the "missing" values of N are zero. Since /1 is divergence free, one has

(49)

so that definition (46) may be transformed through the divergence theorem into

(50)

This integral vanishes because the boundary aV* of the material part of the cell is composed
of the free stress boundaries (lateral faces and internal holes) where /1ijn j = 0 and of the
internal boundary where (JiPi){;3 is anti-periOdic.

From this point, the presentation of Section 2 may be followed. The results remain
formally the same, provided that the indices are suitably defined; indices related to global
quantities (/1), (8(U), N,E, C) vary from one to two, whereas those related to local
quantities (x, U, uP, 8(U), /1, c) vary from one to three. In particular, the tensors A and B
relating 8 to E and /1 to 1:, respectively, have mixed indices (A ij,/i , Bij,/I)' The macroscopic
tensor of elastic stiffnesses C (or its inverse D) defines the membranous behaviour of a
homogeneous plate. This tensor may be compared with the one of Section 2 if divided by
the thickness of the wall (if this latter is clearly identifiable).

4. NUMERICAL APPLlCAnON

To illustrate the method proposed in Section 3 for the determination of the in-plane
elastic characteristics of masonry, the results of some numerical simulations performed
within an object oriented computer code (CASTEM 2000), are now presented. Brick and
mortar are assumed to be isotropic: the Young's moduli and Poisson ratios are respectively
11,000 MPa and 0.20 for the brick, 2,200 MPa and 0.25 for the mortar. The brick dimensions
are 250 x 55 x 120 mm (length x height x thickness). Head and bed mortar joints are 10 mm
thick. Both running bond and stack bond patterns are considered.

For comparison purposes, the predictions based on other formulations incorporating
different kinds of approximations, are also given. A separation is made a priori between
two- and three-dimensional calculations. The two-dimensional group (plane stress) is com­
posed of:

• the method presented in Section 2. Although it was introduced just as a preliminary
step towards the final method, it constitutes a reference of the two-dimensional
group (its only approximation is the plane stress assumption);

• the method proposed by Maier et al. (1991); for running bond, the homogenization
is performed in three steps but only two steps are necessary for stack bond;
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• the method proposed by Pande et al. (1989); the homogenization is performed in
two steps, head joints being introduced first;

• a variant of the "Pande" method; the two homogenization steps are inverted, bed
joints being introduced first. In the case of stack bond, this method coincides with
the one of Maier;

• the multi-layer approximation, also envisaged by Maier et al. (1991); masonry is
considered as composed of alternating layers of mortar and brick (the head joints
are disregarded) and is homogenized in one step.

The method proposed in Section 3 belongs to the three-dimensional group together with:

• the method proposed by Pande et al. (1989);
• the inverse of it ;
• the multi-layer approximation.

In each group, the methods are ordered according to increasing approximation and decreas­
ing complexity; only the two methods presented in the paper need finite element calcu­
lations, whereas any other method may be implemented analytically. The simpler the
method is, the less it can distinguish between different bond patterns.

Since each pattern considered admits two orthogonal axis of symmetry, the equivalent
material/plate is orthotropic. Its stiffness tensor depends on four material constants. In
order to perform direct comparisons between the different methods, all results will be
presented in terms of the four material coefficients E I , Ez, VIZ and GIZ (the thickness of the
wall is here clearly equal to 120 mm).

4.1. Numerical implementation
The three elementary problems (24) for E = Ill, I ZZ and liz (or their equivalent in the

three-dimensional case) may be solved using a standard finite element method. The only
difficulty is to impose periodic conditions on up. In the finite element code CASTEM 2000,
this was done through Lagrange multipliers; details about this procedure are given in the
Appendix.

The periodic conditions may be reduced to ordinary Dirichlet conditions if the pattern
is rectangular (vl_lvz) and if the basic cell admits two orthogonal axis/planes of symmetry
(stack bond and English bond, for example). In that case, each elementary problem may
be solved on a quarter cell with ordinary boundary conditions resulting from the com­
bination of periodicity and symmetry (E = III or 122

) or periodicity and anti-symmetry
(E = lIZ) [Fig. 13(a)]. In the other cases, non-local boundary conditions subsist even if the
reduction to a quarter cell may remain possible; the case of stack bond pattern is shown in
Fig. 13(b). Nevertheless, hexagonal patterns may often be considered as rectangular ones
by choosing cells greater than necessary; this holds true for stack bond [Fig. l3(c)], Dutch
bond and Flemish bond.

However, the periodicity conditions remain inevitable as soon as the periodic pattern
does not admit a cell with two orthogonal axis/planes of symmetry and an orthogonal
frame of reference (1/3 running bond, for example). They are also always necessary when
a non-linear behaviour is considered. Then the superimposition principle does not apply
any more so that it is not sufficient to study separately the effect of each macroscopic strain
component. In the presence of cavities, it will be advisable to choose the basic cell so as to
minimize the number of nodes related by periodicity; for example, the right cell of Fig. 8
will be more economic than the left one.

4.2. Homogenization under the plane stress assumption
The results are summarized in Table 1. Only three significant digits are displayed for

the values obtained through finite element computations (first two rows of results), whereas
four are displayed in the case of analytical calculations. From the comparison of the two
first rows, it turns out that the bond pattern (stack bond or running bond) has very little
influence (less than 1% difference). In both cases, there is in fact a marked anisotropy
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E
(a) Stack bond pattern
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E = [11 or i 2
E = i 2

(b) Running bond pattern

~ = 0

:~~0:~i poJ~ = 0

I u2 = I I
- - I _.~ .. .,..-. I,

I
r----·---I

I
I

E = [11 or i 2
E = i 2

(c) Running bond pattern (double cell)
Fig. 13. Periodic boundary conditions holding on a quarter cell.

Table 1. Elastic constants of the homogenized material; two-dimensional methods

Two-dimensional homogenization (plane stress) E, (MPa) E,(MPa) V,2 G'2 (MPa)

Stack bond 8530 6790 0.196 2580
Running bond 8620 6770 0.200 2620
Running bond in three steps (Maier et al., 1991) 9208 6680 0.2045 2569
Running or stack bond in two steps, head joints first 8464 6831 0.2182 2569

(Pande et al., 1989)
Running or stack bond in 2 steps, bed joints first 8587 6768 0.1948 2569

("Pande inverted" or "Maier" for stack bond)
Multi-layer (Maier et al., 1991) 9646 6950 0.2077 2782

characterized not only by the difference between the Young's moduli £j and £2 (around
25%), but also by the low value of the shear modulus G12 .

When compared with the finite element approach, anyone of the four approximated
methods gives acceptable results but, surprisingly enough, the more elaborated one
(approach in three steps) is not the more accurate; for running bond, the best results are
obtained with the method in two steps (bed joints first). The largest error is found with the
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Stack bond pattern
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Running bond pattern

Original meshes

I_I

Defonne meshes
Fig. 14. Original and deformed mesh for stack bond and running bond under a vertical extension

E = 122 (plane stress finite element method).

simplest approach (multi-layer); the Young's and shear moduli are then systematically
overestimated (up to 13%), which is logical since the head joints are assumed to be filled
with the (stiffer) brick material. For the other three methods, the error is less than 7%.
However, these conclusions should not be generalised since the relative accuracy of the
different methods may depend on the set of data (bond pattern and material properties).
As announced in the Introduction, the order of the successive steps does influence the
results (rows 4 and 5).

Some comparison may also be performed between the local fields developing in the
basic cell for a given macroscopic loading. For instance, the influence of the bond pattern
on the displacement field is illustrated in Fig. 14 where the deformed configuration cor­
responds to the solution of the elementary problem for E = 122

, note the influence of the
boundary conditions, the only thing which changes between the two calculations. Similarly,
the component 0'\1 of the stress field for :E = - 30122 (i.e. for a vertical compression of 30
MPa) is displayed in Fig. 15; note the over-stressing of the brick induced by the head joints
in the running bond pattern. In the same figure the results obtained with the analytical
methods (on smaller cells below) are also shown and their approximate character is sub­
stantiated. The stress field is piece-wise constant over the basic cell, and the stress continuity
is often transgressed at the interface between constant zones. Moreover, some discrepancy
may be observed especially in the head joint where the value of the component 0'\1 varies
from - 2.5 to 1.1 MPa according to the method used. In the brick and the bed joints,
however, all methods inclusive the numerical one, are in fair agreement. Remember that
the above results are approximate since they were all obtained under the plane stress
assumption.

4.3. Three-dimensional homogenization
The results summarized in Table 2 suggest the same comments as in the previous

section; marked anisotropy, scarce influence of the bond pattern, systematic overestimation
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Table 2. Elastic constants of the homogenized material; three-dimensional methods

Three dimensional homogenization £, (MPa) £2 (MPa) Vl2 G'2 (MPa)

Stack bond 8600 7000 0.200 2580
Running bond 8680 6980 0.204 2620
Running or stack bond in two steps, head joints first 8566 7066 0.1974 2569

(Pande et at., 1989)
Running or stack bond in two steps, bed joints first 8676 7006 0.1995 2569

CPande inverted")
Multi-layer 9647 7198 0.2098 2782
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by the multi-layer approach, influence of the order of the successive steps. The components
CT II and CT33 of the local stress field for 1: = - 30122 are represented in Fig. 16, only in the
case of running bond. For the finite element approach, the wall is partially cut so as to see
what occurs inside. Indeed, both components do vary through the thickness of the wall.
This is particularly true for CT33 which starts from zero on the lateral faces and quickly
reaches the same order of magnitude as CTlI inwards. For the approximate methods, only a
section of the wall (slice) needs to be displayed because the stresses are constant throughout
the thickness. These stresses are representative of a very thick wall (the components CTi3 are
zero only in average) and must therefore be compared with the mid-section of the true
three-dimensional wall. The stresses developing inside the wall are indeed well captured by
any of the approximated methods, except in the head joints where divergences are again
observed.

4.4. Synthesis of the results
The two groups are now put together. For a given bond pattern and a given method,

the two-dimensional variant always gives lower values than the three -dimensional one.
This could have been foreseen; the plane stress assumption amounts to neglect the thickness
of the wall and therefore to weaken it. Conversely, the approximate three-dimensional
methods suppose the wall very thick and therefore strengthen it. Only the three-dimensional
finite element approach takes into account the actual thickness. Even so, the differences
between the two- and three-dimensional results remain below 4%, i.e. comparable to the
error related to the approximate character of the methods.

The in-plane components of the two- and three-dimensional local stress fields (CTlb CTn

and CT12) are quite similar (see, for example, CT II in Figs 15 and 16). However, the out-of­
plane components CTn, CT23 and CT33, which are by definition zero in the two-dimensional
approach, may differ strongly (see CT 33 in Fig. 16). Such a fact seems to have little influence
on the in-plane elastic characteristics (the homogenized constants are only slightly modi­
fied), but might be crucial in the non-linear range (failure). A simple check will now provide
support for this theory.

Assume the resistance of both constituents to be ruled by a Mohr-Coulomb criterion,
the tension and compression limits, it and.f~, being, respectively, 5.2 MPa and 52 MPa for
the brick, 0.5 MPa and 14 MPa for the mortar. A rough insight into the failure of masonry
under vertical compression may be obtained by plotting the isovalues of the failure criterion
for the elastic stress field, i.e. the quantity (CTdit - CTm/fc), where CTI?: CTn ?: CTIII are the
principal stresses of (1. The predictions based on all the methods are presented in Fig. 17
(running bond masonry under a vertical compression of 30 MPa). In the two-dimensional
finite element case, head and bed joints are far beyond failure, whereas the criterion is not
reached in the brick yet. In the three-dimensional case, the same situation is encountered
but only in a thin layer near the lateral faces. In the inner part of the wall, things are
somehow inverted unless in the head joint; the bed joint is far from failure whereas the
brick is about to fail. This is obviously due to the component CT33 of the three-dimensional
stress field which is negative (compression) in the bed joint and positive (tension) in the
brick as it may be seen in Fig. 16. This disagreement between the two- and three-dimensional
analyses is reproduced by all the approximate methods, especially in the bed joint and in
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the brick. It is therefore most probable that the conclusions drawn in the elastic range are
erroneous in the non-linear range, in particular:

• the plane stress assumption may lead to erroneous results quantitatively (under­
estimate of the ultimate load) as well as qualitatively (wrong failure mechanism);

• the bond pattern may strongly influence the failure mechanism and consequently
the failure load. For instance, under vertical compression, cracks may develop easily
in the aligned head joints of stack bond masonry but need to pass through or around
the brick in running bond masonry.

Of course, those conjectures need to be confirmed by performing effectively non-linear
computations, for example, with damage or plasticity constitutive laws. The elementary
problem (21) or (48) is then solved for a given macroscopic loading history. However, since
the superposition principle does not apply anymore, the complete determination of the
homogenized constitutive law requires an infinite number of computations (one for each
possible loading history). Nevertheless, simplified models may be built on the basis of crude
approximations of the local stress fields determined from selected loading histories. The
reader is referred to Suquet (1987) who provided a comprehensive study of the homo­
genization theory for elastic-perfectly plastic materials.

5. CONCLUSION

The homogenization theory for periodic media has been applied in a rigorous way for
deriving the in-plane elastic characteristics of masonry. In particular, the real geometry
(bond pattern and finite thickness of the wall) has been taken into account. The results
obtained constitute a reference basis for evaluating the relevance of some assump­
tions/approximations commonly used in the literature. As a matter of fact, the numerical
applications performed showed that varying the bond pattern, neglecting the head joints
or assuming plane stress states, result in quite reasonable estimates of the global elastic
behaviour of masonry. However, a careful examination of the elastic stresses that develop
in the different constitutive materials (brick and mortar) anticipate that the situation might
be quite different in the non-linear range (damage or plasticity). In particular, the plane
stress assumption is controversial since it is in disagreement with the exact three-dimensional
analysis.
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Imposing periodic conditions on the displacements through Lagrange multipliers
Once it has been discretized by finite elements, any elastic problem defined on a domain V takes the following

form:

KU=F, (AI)

where U is the vector containing all the degrees-of-freedom (displacements), K is the stiffness matrix and F the
vector of the nodal forces (volumetric and/or boundary loads). In order to become definite, the linear system (51)
must be supplemented with Dirichlet conditions, at least for controlling the rigid body motions of the domain V.
These conditions may be written under the general form

(A2)

where A is a rectangular matrix, Uo is the degree-of-freedom subjected to Dirichlet conditions and B is a given
second member. A Dirichlet condition may consist in assigning a fixed value to a displacement at a given point.
It may also consist in imposing relations between the displacements at different points. This is precisely the case
of the periodic conditions, where the displacements of any opposite points of the boundary of the cell must be
equal.

In many finite element codes, the problem (AI) + (A2) is solved by modifying the terms of K and F in order
to take into account (A2) (for example, by elimination or penalisation). However, such modifications may become
impracticable when the Dirichlet conditions are complex (relations involving several degrees-of-freedom).

In the finite element code CASTEM 2000, the Dirichlet conditions (52) are imposed through Lagrange
multipliers. Instead of modifying the terms of K and F, the set of unknowns U is augmented by two vectors AI

and A2
, having the same dimension as B, and the elastic functional of the original problem (AI), i.e.

(A3)

is modified into

(A4)

The minimization of W* leads to a well-conditioned symmetric linear system provided that K is also a well­
conditioned symmetric matrix. Its solution is composed of the vector U verifying (A I) +(A2), and of two vectors
AI and A z which are obviously equal and correspond to the reaction forces associated with the Dirichlet boundary
conditions (52).

Although this method may appear quite heavy (two more unknowns are needed for each Dirichlet condition),
its general character is a strong advantage when implementing the homogenization method described in this paper.


